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Abstract
The nuclear spin–lattice relaxation in the Bi4Ge3O12 single crystal was studied
by the 209Bi NQR spin-echo technique. The recovery curves were measured for
all 209Bi NQR transitions of nuclear spin I = 9/2 in a large temperature range
10–230 K. The experimental relaxation curves were described in terms of the
single effective spin–lattice relaxation time T ∗

1 . The temperature dependence
of 1/T ∗

1 was close to a T n-law with n = 2.4–2.7. A theoretical treatment
was given for the nuclear spin–lattice relaxation in the multi-level system
for the case of a single-axial crystalline electric field. Both quadrupole and
magnetic mechanisms of relaxation were taken into account. In separating the
quadrupole and magnetic contributions, an idea of Rega (Rega T 1991 J. Phys.:
Condens. Matter 3 1871) was used. To extract the temperature dependences
of the parameters W1, W2 and WM the fitting procedure for calculated and
experimental relaxation times was used. High-accuracy measurements of the
recovery curves enable us to conclude that the magnetic mechanism contributes
noticeably to the spin–lattice relaxation in Bi4Ge3O12 at T � 50 K.

1. Introduction

The Bi4Ge3O12 compound contains neither transition nor rare-earth elements. However, local
ordered magnetic fields of about 30 G were revealed in the Bi4Ge3O12 single crystal by 209Bi
NQR experiments [1]. Zero-field splittings showing the typical Zeeman patterns were found
earlier in the 209Bi NQR spectra of α-Bi2O3 and Bi3O4Br (see [2] and references therein).
Moreover, spectral patterns of dramatically increased intensity and multiplicity were observed
in 209Bi NQR spectra of the Bi4Ge3O12 single crystal in the presence of a rather weak external dc
4 Author to whom any correspondence should be addressed.
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magnetic field (up to 500 Oe) [1]. The origin of these phenomena is not known yet. Therefore
it is of interest to perform 209Bi NQR spin–lattice relaxation experiments on a Bi4Ge3O12

single crystal to elucidate the nature of the relaxation mechanism (quadrupole or magnetic).
The analysis of spin–lattice relaxation experiments performed by the NQR technique or

by the NMR method in the presence of quadrupole effects for nuclei with spins I � 5/2 is
complicated because of the multi-exponential nature of the relaxation process in multi-level
systems with non-equidistant energy levels [3–9]. In particular, in the case of a single-axial
crystalline electric field in Bi4Ge3O12 there are five doubly degenerate energy levels |±m〉 of
209Bi nuclear spin I = 9/2 with transition frequencies between neighbouring levels related
as 1:2:3:4 [1]. Therefore the spin–lattice relaxation process in Bi4Ge3O12 has to be described
in terms of four relaxation times T1i (i = 1, . . . , 4). The quadrupole relaxation times T1i

depend on the quantities W1 and W2, which are the coefficients in the �m = ±1 and ±2
relaxation transition probabilities [10]. The values and temperature dependences of W1 and
W2 are governed by a specific mechanism of quadrupole relaxation and are a priori unknown.

Further problems arise when the magnetic mechanism competes with the quadrupole one
in the spin–lattice relaxation process [11–13]. A third unknown quantity WM , which is a
coefficient in the �m = ±1 magnetic relaxation transition probability [3], also affects the
relaxation times T1i in this case.

To avoid the difficulties of a full-scale treatment of the relaxation process in the multi-level
systems, an elegant method for separating the magnetic and quadrupole rates by analysing the
recovery plots at t → 0 was proposed by Rega [11]. However, the procedure proposed in [11]
seems to be oversimplified. In this paper we use the idea of Rega [11] and present a complete
experimental and theoretical treatment of the relaxation mechanisms in Bi4Ge3O12.

2. Experimental procedure

The Bi4Ge3O12 single crystals were grown in air from a stoichiometric melt. The pulling
process was performed by the Czochralski method using a platinum crucible 90 mm in diameter
and 200 mm in height for charging. The starting charge for growth was prepared by solid-
state synthesis from extra-pure bismuth oxide and germanium oxide, both alpha allotropes.
The solid-state chemical reactions were conducted in platinum crucibles in three stages: pre-
sintering of the starting mixture at 790 ◦C for 70 h followed by synthesis at 850 and 950 ◦C for
a total of 100 h. The weight of the starting load was 4–5 kg. Crystallographic [001]- or [111]-
oriented seed crystals were used. The pulling rate was 1–3 mm h−1 and the crystal rotation
rate was 10–30 rpm. Colourless, transparent crystal boules 40 mm in diameter and 200 mm in
length were grown. For NQR relaxation experiments a sample with size 4 × 4 × 10 mm was
used. The longest side of the crystal coincided with the axis of the radio-frequency coil.

NQR experiments were performed using a home-built coherent pulsed spectrometer
equipped with a closed-cycle cryogenic refrigerator, JANIS CCS-550, with the operation
temperature range 9–300 K. The 209Bi NQR spectra were measured using a frequency step
point-by-point spin-echo technique. To avoid echo distortions from the free induction decay
(FID) and ringing, a simple two-phase cycling sequence was used. The spin–lattice relaxation
rate was measured using the saturation–recovery method at frequencies of different quadrupole
transitions of 209Bi nuclear spins. The saturation pulse train consists of 100 pulses of 4 µs
with a pulse delay of 30 µs.

Recovery curves were measured for all 209Bi transitions. As an example, recovery curves
for the 1/2–3/2 transition at different temperatures are shown in figure 1. The time delay t

between the saturation pulse train and the spin-echo sequence covers more than six decades. At
temperatures below 150 K the initial saturation is perfect. All recovery curves are successfully
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Figure 1. Recovery curves of 209Bi in Bi4Ge3O12 at different temperatures for the 1/2–3/2
transition. Solid curves show the best fits to the formula (18) (see the text).

fitted by a one-exponential function with characteristic time T ∗
1 . The extracted effective

relaxation rates R∗
1i = 1/T ∗

1i for all 209Bi transitions as functions of temperature are presented
in figure 2. The temperature dependences of 1/T ∗

1i are close to a T n-law with n = 2.4–2.7.

3. Theoretical treatment of the nuclear spin–lattice relaxation process for the
single-axial crystalline electric field and the spin I = 9/2

The Bi atoms occupy the c-type sites located on the threefold rotation axes in the eulitine-type
structure of the Bi4Ge3O12 crystal with electric field gradient (EFG) asymmetry parameter
η = 0. The frequencies of the transitions between the five doubly degenerate energy levels
|±m〉(m = 1/2, . . . , 9/2) of the spin I = 9/2 are multiples of the frequency νQ:

νQ = 3eQqzz/[2I (2I − 1)]h, (1)

where eQ is the nuclear quadrupole moment, qzz is the maximum component of the EFG
tensor. Since in Bi4Ge3O12 the local magnetic fields are rather weak [1], their influence on
the eigenfunctions of the nuclear spins can be ignored. The theoretical study of the relaxation
process is based on the master equation [10]:

dNi

dt
=

∑
j

(WijNj − WjiNi), (2)

where Ni is the population of the ith level, Wij is the probability of transition from the j th to
the ith level, the sum over j is taken for all allowed transitions (�m = ±1 and ±2) between
the levels. The probabilities for these transitions were calculated using the formulae [5]
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Figure 2. Relaxation rates R∗
1i = 1/T ∗

1i for the quadrupole transitions as functions of temperature.
Solid lines show the power law R1 = T n with n = 2.4, 2.4, 2.4, 2.7 for the ν1, . . . , ν4 transitions,
respectively.

Wm±1,m = (2m ± 1)2(I ∓ m)(I ± m + 1)

2I 2(2I − 1)2
W1, (3)

Wm±2,m = (I ∓ m)(I ∓ m − 1)(I ± m + 1)(I ± m + 2)

2I 2(2I − 1)2
W2, (4)

where W1 and W2 are unknown quantities. The temperature dependences of W1 and W2 are
determined by comparison of the calculated and experimental relaxation rates.

The transition probabilities for the �m = ±1 magnetic relaxation processes were defined
in [3]:

WM
m±1,m = WM(I ∓ m)(I ± m + 1). (5)

The temperature dependence ofWM can also be determined by comparison of the calculated and
experimental relaxation rates. One should take into account that the transition probabilities
from upper levels to lower ones differ from the probabilities for corresponding backward
transitions by the factor exp(ζ�) ≈ 1 + ζ� (where � = hνQ/kT � 1, ζ = 1, 2, . . . , 5, 7).
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The differences of the level populations are defined as follows:

n±1 = N±1/2 − N±3/2; n±2 = N±3/2 − N±5/2;
n±3 = N±5/2 − N±7/2; n±4 = N±7/2 − N±9/2;
n+i = n−i; N+i = N−i .

(6)

Subtracting the corresponding pairs of equations (2), one can write the resulting rate
equations in the following form (see in [5] an example of a similar procedure for the spin 5/2):

ṅ1 + (8 + 71γ + 8
√

6β)n1 + 2p̃1n1 − (14 − 7γ + 2
√

21β)n2 − 14γ n3

= n0(−20 + 43γ + 4(2
√

6 −
√

21)β); (7)

ṅ2 − 4(1 + γ +
√

6β)n1 − p̃1n1 + (28 + 35γ + 4
√

21β)n2 − 8(3 − γ + β)n3 − 6γ n4

= 2n0(−10 + 33γ + 2(2
√

21 − 6 −
√

6)β); (8)

ṅ3 − 21γ n1 − (14 + 7γ + 2
√

21β)n2 + 4(12 + 5γ + 4β)n3 − 6(4 − γ + β)n4

= n0(20 + 49γ + 4(6 −
√

21)β); (9)

ṅ4 − 14γ n2 − 8(3 + γ + β)n3 + 6(8 + γ + 2β)n4 = 4n0(30 − 7γ + 6β). (10)

In equations (7)–(10) ṅi = dni/dτ (i = 1, . . . , 4), τ = tW1/108, γ = W2/W1, β =
54WM/W1, n0 = �N/5; p̃1 = 108p1/W1, N is the total number of nuclei. When writing (7)
and (8), it was assumed that Hrf saturates the transition between the |±1/2〉 and |±3/2〉 levels.
Since the resonance radio-frequency field Hrf ‖ x (x is the axis of the RF coil), the probability
p1 of a transition between |±1/2〉 and |±3/2〉 levels is proportional to the square of the matrix
element |〈±3/2|HrfxIx |±1/2〉|2 = 6H 2

rf x . In the case of saturation of the 3/2–5/2 transition,
the terms −p̃2n2, 2p̃2n2,−p̃2n2 should appear in equations (7)–(9) instead of p̃1n1. Similar
modifications can be made for the 5/2–7/2 and 7/2–9/2 transitions in (7)–(10).

Equations (7)–(10) enable one to study numerically the relaxation process for the nuclear
spin I = 9/2 in the case of single-axial electric field. In particular, it is possible to extract
the initial values ni0, assuming that the influence of Hrf leads to the steady-state picture. By
setting ṅi = 0 in (7)–(10), we obtain a system of linear non-uniform algebraic equations for
ni0. For the case of pure quadrupole relaxation (β = 0) it is possible to find an analytical
solution of this system, suggesting that the probabilities of transitions caused by Hrf are much
larger than those of the relaxation transitions:

n10 = 0; n20 = n0(192 + 832γ + 592γ 2 + 63γ 3)

96 + 344γ + 218γ 2 + 21γ 3
;

n30 = n0(288 + 1032γ + 570γ 2 + 42γ 3)

96 + 344γ + 218γ 2 + 21γ 3
; n40 = n0(384 + 1376γ + 872γ 2 + 105γ 3)

96 + 344γ + 218γ 2 + 21γ 3
.

(11)

When both γ and β are non-zero, ni0 can be found by a standard numerical procedure.
The solutions of the uniform system of linear differential equations can be expressed in a

simple form: ni = aie−λτ (i = 1, . . . , 4). Substituting these solutions into (7)–(10) with zero
right-hand parts and the terms with p̃1, it is possible to get a system of linear uniform algebraic
equations for the coefficients ai . The characteristic equation of this system enables one to find
the relaxation rates λi = T −1

1i (i = 1, . . . , 4) as functions of γ and β:∣∣∣∣∣∣∣∣

8 + 71γ + 8
√

6β − λ −14 + 7γ − 2
√

21β −14γ 0

−4(1 + γ +
√

6β) 28 + 35γ + 4
√

21β − λ −8(3 − γ + β) −6γ

−21γ −14 − 7γ − 2
√

21β 4(12 + 5γ + 4β) − λ −6(4 − γ + β)

0 −14γ −8(3 + γ + β) 6(8 + γ + 2β) − λ

∣∣∣∣∣∣∣∣
= 0.

(12)
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Figure 3. Relaxation rates λj for j = 1 (♦), j = 2 (�), j = 3 (�), j = 4 (◦) as functions of γ
for β = 0. Solid curves are a guide for the eye.

Figure 4. Relaxation rates λj (j = 1 . . . 4) as functions of β for γ = 0. The symbol notation is
the same as in figure 3. Solid curves are a guide for the eye.

This equation can be solved numerically. Figures 3 and 4 show the specific solutions
λj = λj (γ ) at β = 0 and λj = λj (β) at γ = 0, respectively. As follows from figures 3 and 4,
the relaxation rates λj are fast-growing non-intersecting functions of γ and β. When both γ

and β are non-zero, the character of the functional dependence of λj is preserved.
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Figure 5. Pre-exponential factors cj a1j (13) as functions of γ for β = 0. The symbol notation is
the same as in figure 3. Solid curves are a guide for the eye.

The solution of the non-uniform system (7)–(10), which describes the relaxation process
for τ > 0 and for Hrf switched off (p̃1 = 0), can be written in the following form:

ni

n0
= αi +

4∑
j=1

cjaije−λj τ , i = 1, . . . , 4. (13)

Here α1 = 1, . . . , α4 = 4, λj (j = 1, . . . , 4) are solutions of equation (12), aij are
normalized eigenfunctions corresponding to eigenvalues λj , the coefficients cj are determined
using the initial conditions for ni :

ni0

n0
= αi +

4∑
j=1

cjaij , (14)

The pre-exponential factors cjaij in (13) are functions of the parameters γ and β, as well
as the relaxation rates λj . As an example, figures 5 and 6 show the dependences of cja1j on γ

at β = 0 and 3, respectively. It is worth noting a peculiarity of the relaxation process: while
the values of λj determine the timescale of the relaxation, the pre-exponential factors cjaij are
responsible for the form of the relaxation curve. To show this, we rearranged formula (13),
taking it into account that ni0 = 0 when the ith transition is saturated (see for example (11)).
Then from (14),

αi = −
4∑

j=1

cjaij . (15)

Substituting αi from (15) into (13), we obtain

ni

n0
= −

4∑
j=1

cjaij (1 − e−λj τ ). (16)
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Figure 6. Pre-exponential factors cj a1j (13) as functions of γ for β = 3. The symbol notation is
the same as in figure 3. Solid curves are a guide for the eye.

The ratio ni/n0 (16) consists of four partial contributions:

−cjaij (1 − e−λj τ ). (17)

The time evolutions of (17) for i = 1, β = 0 and γ = 1 are shown in figure 7. From
figures 3, 5 and 7 it is clear that the values of the contributions depend mainly on the factors
cjaij . Moreover, when there is no significant difference between the values of the relaxation
rates λj , the resulting relaxation curve is rather smooth. Therefore the analysis of experimental
recovery curves may be ambiguous. To avoid this difficulty, we used the idea of Rega [11] to
consider the relaxation process in an early stage.

The experimental recovery curves for all of the 209Bi NQR transitions in the Bi4Ge3O12

were approximated by the following expression:

Yi = Y0i + Ai(1 − e−t/T ∗
1i ), (18)

where i = 1, . . . , 4 correspond to transitions 1/2–3/2, . . . , 7/2–9/2, respectively. The values
of T ∗

1i for a number of temperatures in the range 10–300 K are presented in table 1. The
effective experimental relaxation rate for each transition, R∗

1i = 1/T ∗
1i , is defined by(

d

dt

Yi − Y0i

Ai

)
t=0

= 1

T ∗
1i

. (19)

An effective calculated relaxation time T
(i)

1 for the ith transition is defined by the derivative of
(13) or (16): (

d

dt

ni

αin0

)
t=0

= − W1

αi × 108

4∑
j=1

aij cjλj ≡ 1

T
(i)

1

, (20)

The factor αi appears in the denominator of formula (20) due to the normalization of the
calculated relaxation curve to unity at t → ∞ for each transition. A program for numerical
calculations of T (i)

1 as a function of the three parameters W1, γ and β was developed.
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Table 1. . Effective experimental (T ∗
1i ) and calculated (T (i)

1 ) relaxation times (i = 1, . . . , 4) for all NQR transitions at different temperatures. The
errors for T ∗

1i include both the fitting and instrumental errors.

T1 (ms) T = 10 K T = 15 K T = 30 K T = 40 K T = 50 K T = 70 K T = 90 K T = 150 K T = 230 K

1/2–3/2 T ∗
11 14 700 ± 400 7850 ± 150 1530 ± 15 760 ± 10 440 ± 5 154 ± 4 104 ± 3 32 ± 1 12.0 ± 0.7

T
(1)

1 13 900 6690 1540 751 420 154 104 32.3 12.6

3/2–5/2 T ∗
12 10 900 ± 500 5800 ± 150 1300 ± 25 580 ± 30 295 ± 20 142 ± 3 74 ± 2 22.0 ± 0.5 12.0 ± 0.7

T
(2)

1 12 710 5950 1230 599 320 132 73 19.3 8.8

5/2–7/2 T ∗
13 17 300 ± 1200 2900 ± 170 830 ± 30 495 ± 20 220 ± 15 88 ± 5 50 ± 2 10.6 ± 0.4 5.9 ± 0.3

T
(3)

1 12 230 5030 940 509 260 104 53 13.3 6.3

7/2–9/2 T ∗
14 12 800 ± 1900 11 000 ± 900 1140 ± 50 600 ± 15 365 ± 30 134 ± 7 61 ± 13 16 ± 1 6.0 ± 0.8

T
(4)

1 14 710 6100 1090 589 300 124 59 14.4 7.1
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Figure 7. Evolution in time of the partial contributions (17) to the relaxation curve for the first
NQR transition 1/2–3/2 calculated with β = 0 and γ = 1. The symbol notation is the same as in
figure 3. The sum of the partial contributions (16) is denoted by ∗. Solid curves are a guide for the
eye.

The procedure of fitting the effective relaxation times T ∗
1i and T

(i)
1 was carried out

numerically to define the temperature dependence of the parameters W1, W2 and WM . As
a criterion for the fitting procedure, the minimum of the following expression was used:

S =
4∑

i=1

(T ∗
1i − T

(i)
1 )2

T ∗
1i

. (21)

The values ofT (i)
1 corresponding to the best fit are presented in the table 1. The temperature

dependences of the parameters W1, W2 and WM are shown in figure 8.

4. Results and discussion

As follows from table 1, at T � 30 K the calculated values of T
(i)

1 correctly reproduce the
experimentally observed sequence of effective relaxation times for all transitions examined,
T ∗

11 > T ∗
12 > T ∗

13 < T ∗
14. It must be noted that the number of fitting parameters (W1, W2, WM )

was less than the number of independent experiments. Both of these facts can be regarded as
evidence of the reliability of the procedure, described by the formulae (18)–(21). The fitting
procedure (21) enabled us to extract the parameters W1, W2 and WM at each temperature (see
figure 8).

The effective calculated relaxation rates 1/T (i)
1 (20) clarify the meaning of the effective

experimental relaxation rates R∗
1i for the multi-level system as the weighted sum of the ‘true’

relaxation rates λj .
At low temperatures (T � 15 K), when the effective relaxation times T ∗

1i increase sharply,
the character of the relaxation process also changes. For example, at 15 K the largest value
among the T ∗

1i is T ∗
14 (see table 1), while at 10 K T ∗

13 attained the maximum value, which does
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Figure 8. The temperature dependences of the parameters W1, W2 on a logarithmic y-scale (left
panel) and a linear y-scale (right panel, top) and the parameter WM (right panel, bottom). Solid
curves show the best fits to the power law W(T ) ∼ T n with n = 2.0(1) for W1 and n = 2.4(1) for
W2. In the WM(T ) plot the solid curve is a guide for the eye.

not agree with the above-mentioned relation of relaxation times observed at T � 30 K. As a
consequence, the fitting procedure for S (21) at 15 and 10 K gives T

(i)
1 -values which differ

markedly from the experimentally observed T ∗
1i (see table 1). The origin of this behaviour at

T � 15 K is not clear yet.
The problem of separation of quadrupole and magnetic contributions in spin–lattice

recovery laws was discussed [11, 12] in the context of the magnetic properties of high-Tc

superconductors and related compounds. A detailed treatment of this problem was given by
Brinkmann and co-workers [13] for the case of a quadrupole-perturbed Zeeman Hamiltonian
in the presence of mixed magnetic and quadrupole fluctuations, which is contrary to our case.
The authors conclude that it is not possible to separate magnetic and quadrupole contributions
to the relaxation rate if the experimental error is above 10%. The ‘dominant’ contribution
(quadrupole or magnetic) determines the relaxation process; therefore the time evolution of
the multi-level system to the equilibrium state can be described in terms of a single time
constant, T eff

1 .
In our case we took advantage of the high symmetry of Bi sites in the Bi4Ge3O12 crystal

lattice and the weakness of the local magnetic fields found in this compound [1]. This enabled
us to use the formulae (3)–(5) for calculations of transition probabilities. In table 1 the resulting
errors for the effective relaxation times T ∗

1i are presented—which include both the accuracy of
the experimental data fitting by the formula (18) and an instrumental error. As follows from
table 1, these errors were predominantly at the level of 5% or less. High experimental accuracy
made it possible for us to estimate the typical acceptable range of variance of the parameters
W1, W2 and WM at the level of 20–25% of their values determined on the basis of our fitting
procedure (21).

As follows from figure 8, the parameters W1 and W2 grow rapidly—close to the parabolic
law—which is similar to the temperature behaviour of the experimental effective relaxation
rates R∗

1i (see figure 2). The proportionality W1 ∼ 1/T (i)
1 follows from the definition (20). It

must be noted that throughout the temperature range studied, 10–230 K, the values of the W2-
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parameter were noticeably smaller than those ofW1. So the magnitude of the ratio γ = W2/W1

never exceeded 0.5. In some previous works, γ was taken equal to 1 (see, for example [11,12]).
The bottom right panel in figure 8 shows the temperature dependence of WM . On the

basis of the results obtained, we can conclude that at T � 70 K the spin–lattice relaxation in
Bi4Ge3O12 is governed mainly by the quadrupolar mechanism. At 50, 40, 15 and 10 K the
contribution of the magnetic mechanism is quite noticeable. According to (5), the probabilities
of transitions governed by the magnetic mechanism attain rather large values and the parameter
β in the rate equations (7)–(10) is defined as 54WM/W1. At low temperatures, when W1 is not
large (figure 8), even small values of WM contribute significantly to the relaxation. However,
in the temperature range T � 70 K, where W1 and W2 increase by more than two orders of
magnitude as compared with those at 10 K, the parameter β plays a minor role in the rate
equations. It is worth noting that in La2CuO4, in which there is the antiferromagnetically
ordered subsystem of Cu spins at T < TN ∼ 300 K, the magnetic relaxation process becomes
dominant in the temperature range (T < 50 K) [12] where the magnetic mechanism contributes
noticeably to the relaxation process in Bi4Ge3O12.

For the quadrupolar mechanism of relaxation caused by acoustic phonons, the following
temperature dependence of the relaxation rate should be observed [10]: 1/T1 ∼ T 2 at T � θD
and 1/T1 ∼ T 7 at T < 0.02θD , where θD is the Debye temperature. For Bi4Ge3O12,
θD = 236 K [14], so we were not able to find a sharp drop of the relaxation rate at T < 0.02θD
because the lowest temperature of the experiment was 10 K. The measured effective relaxation
rates 1/T ∗

1i obeyed the power law T n with n = 2.4 for the first three quadrupole transitions
and, for the upper (7/2–9/2) transition, n was equal to 2.7 over the temperature range studied,
10–230 K (see figure 2). The deviation of n from 2 in the observed power law could be
attributed to the optic phonon contribution to the quadrupolar mechanism of relaxation for the
temperature range T ∼ θD in which these vibrational modes are populated (for Bi4Ge3O12

the frequencies of the lowest registered Raman- and IR-active optic modes are equal to 92
and 63 cm−1 [15], respectively). The reason for the universality of the power law T n for the
effective relaxation rates in the large temperature interval 10–230 K is not known yet. It is
notable that for La2CuO4 at T > 70 K, the relaxation rate is also proportional to T 2 [12] even
though θD ∼ 400 K for this compound.

The existence of paramagnetic centres, presumably holes in the unfilled p-electron shell of
oxygen ions, was proposed as the origin of the observed magnetoelectric effect in the α-Bi2O3

single crystal. This effect is linear with respect to external magnetic field [16, 17]. The holes
possess a magnetic moment due to spin and orbital magnetic moments. It is quite possible that
a similar intrinsic system of paramagnetic centres exists in Bi4Ge3O12. Tunnelling of holes
between several equilibrium positions accompanied by changes of their magnetic state can be
regarded as the cause of the local magnetic field fluctuations in Bi4Ge3O12 at low temperatures.
This leads to a noticeable contribution of the magnetic mechanism to the nuclear spin–lattice
relaxation, which is observed in our experiment. Unfortunately, the origin of the sharp peak
in the temperature dependence of WM is not clear yet.

5. Conclusions

It was demonstrated that for the case of a single-axial crystalline electric field and a weak
local magnetic field realized in Bi4Ge3O12 it is possible to separate the contributions of
quadrupolar and magnetic mechanisms to the relaxation. The experimental recovery curves for
the relaxation in a multi-level system were successfully described in terms of a single effective
relaxation rate 1/T ∗

1 , which is the weighted sum of the ‘true’ relaxation rates. The temperature
dependence of 1/T ∗

1 was described by a T n-law with n = 2.4–2.7 over a large temperature
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range 10–230 K. The spin–lattice relaxation in Bi4Ge3O12 at T > 70 K is governed mainly
by the quadrupolar mechanism, while at low temperatures the contribution of the magnetic
mechanism is noticeable.
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